ADHERENT JET ALONG A CURVED SURFACE
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The problem of a flat jet traveling along a curved surface has been solved numerically and
the results are discussed here, The characteristics of a developing boundary layer as well
as the frictional stresses at a convex and at a concave surface are shown,

Let a solid curved surface be placed in an infinite space filled with a viscous fluid, Off this surface
there is an infinitesimally narrow discharging orifice oriented parallel {o the surface. A jet of fluid flows
from this orifice tangent to the surface, the physical properties of this fluid being the same as those of the
ambient fluid. The jet travels a long distance enveloping the surface. This is to say that the pressure drop
from the outer filled space to the vicinity of the surface balances the forces of inertia.

Thus, the flow is governed principally by the pressure drop across and along the boundary layer, The
significance of the longitudinal pressure drop is evident inasmuch as the jet velocity decreases farther away
from the surface while the pressure at the source increases correspondingly and approaches the ambient
pressure, Therefore, the classical boundary-layer equations, which are used for analyzing the jet flow
along a flat wall, cannot be applied here, because they do not account for the transverse pressure gradient,

We will introduce an orthogonal curvilinear system of coordinates with the origin at the jet source.
The x-coordinates run along the surface in the direction of the jet, the y-axis is normal to the surfaces.
The equations of motion for an incompressible fluid are in this case [1]
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and the boundary conditions are
u=0 v=90 at y=0 u=0 a y—>oo. (2)

The plus sign in system (1) corresponds to a convex surface, the minus sign here corresponds fo a
concave surface, In calculating the jet discharge along a curved surface, autonomous solutions have been
considered which are feasible if the radius of curvature is a specified monomial power function of the longi-
tudinal coordinate x [2, 3].

Autonomous solutions do not exist in the general case, however, because there are two parameters
in the problem. A method leading to a quasiautonomous solution is based on expanding the flow function
into a power series in terms of the perturbation parameter, but this is valid only near the source [4]. We,
therefore, propose here a numerical solution,

On the basis of the incompressibility condition, we express the flow function ¥, y) as
Xxv
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Fig, 1, Dimensionless velocity profile 1—1(4) and frictional stress
Ty (b) as functions of the ¢ -coordinate,

where the numerical constant E, is not the same as the product of the volume flow per second and the mo-
mentum per unit mass in [5], Then Eq, (1) for function ¥ will hecome
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7 .
with the upper sign referring to a convex surface and the lower sign referring to a concave surface,
The boundary conditions (2) are now rewritten as
F =0, ai:o at =70 21—;;:0 at 1> o0, (5}
an an
The resulting Eq. (4) with the boundary conditions (5) is universal when referred to a constant radius
of curvature and it needs to be solved only once. The introduced function F(7, £) satisfies the Akatnov

equation [5} at £ = 0 and, thus, the initial profile at £ = 0 is represented as a solution to the Akatnov equa-
tion for a jet traveling along a flat wall,

By introducing the function ¢ = 8F/an, we reduce Eq, (4) to a second-order differential equation which
has been solved numerically. The numerical solution to Eq, (4) with the boundary conditions (5) was ob-
tained by the implicit difference scheme, The derivatives with respect to n and ¢ were replaced by central
differences and the resulting system of nonlinear algebraic equations was solved on each £ -step by simple
iterations, while the linearized system of difference equations was solved in each iteration by the elimina-
tion method [6].

The results of these computations to obtain a dimensionless velocity profile u = u/VE,/vx and a di-
mensionless profile of frictional stress Ty, = Ty /u? E}/v®® are shown in Fig. la, b respectively.

The profiles of velocity and frictional stress depend largely on the curvature of the surface. As ¢
increases, the velocity profile at a concave surface becomes more peaked with a maximum which also in-
creases and shifts toward lower values of the autonomous variable n. The frictional stress follows an
analogous trend. Ata convex surface the jet slows down and at some section the boundary layer separates
from the surface. Numerical calculations indicate that the critical section is determined by the parameter
value £op = 1.15. At higher values of § the profile becomes blurred.

An eggential feature here is that a restructuring of the boundary layer occurs within the initial seg-
ment along the curved surface (Fig.1lj. The results obtained in [4] are alsc shown in Fig. 1b.

An explanation for the discrepancies is that in [4] the flow function was expanded into series in terms
of a small parameter, valid only near the source. Only two terms of the series were retained there, and
this resulted in large errors in calculations of the flow far away from the source.
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NOTATION

are the longitudinal and transverse coordinate regpectively;
are the projections of the velocity vector on the normals of tangents to the x- and y-coordinate curves
respectively;

is the flow function;

are the dimensionless coordinates;

is the dimensionless flow function;

is the tangential skin-friction stress;

is the density;

is the kinematic viscosity;

is the dynamic viscosity;

is the radius of curvature.
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