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The problem of a flat jet t ravel ing along a curved surface has been solved numerica l ly  and 
the resul ts  are discussed here .  The charac te r i s t i c s  of a developing boundary layer  as well 
as the fr ict ional  s t r e s s e s  at a convex and at a concave surface are  shown. 

Let  a solid curved surface  be placed in an infinite space filled with a viscous fluid. Off this surface 
there is an infinitesimally na r row discharging orif ice oriented paral le l  to the surface .  A jet of fluid flows 
f rom this orifice tangent to the surface,  the physica ! Propert ies  of this fluid being the same as those of the 
ambient fluid. The jet t ravels  a long distance enveloping the surface.  This is to say that the p res su re  drop 
f rom the outer filled space to the vicinity of the surface balances the forces  of inert ia.  

Thus, the flow is governed principal ly by the p r e s s u r e  drop ac ros s  and along the boundary layer .  The 
significance of the longitudinal p r e s su re  drop is evident inasmuch as the jet velocity decreases  far ther  away 
f rom the surface while the p re s su re  at the source  increases  correspondingly and approaches the ambient 
p r e s s u r e .  Therefore ,  the c lass ical  boundary- layer  equations, which are  used for analyzing the jet flow 
along a flat wall, cannot be applied here,  because they do not account for the t r ansverse  p res su re  gradient.  

We will introduce an orthogonal curvi l inear  sys tem of coordinates with the origin at the jet  source .  
The x-coord ina tes  run along the surface  in the direct ion of the jet, the y-axis  is normal  to the sur faces .  
The equations of motion for an incompress ib le  fluid are  in this case [1] 
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and the boundary conditions are  
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u = O ,  ~ J = O  ! a t  y = O ;  u = O  at y - -~oo.  (2) 

The plus sign in sys tem (1) cor responds  to a convex surface,  the minus sign here corresponds  to a 
concave surface.  In calculating the jet discharge along a curved surface,  autonomous solutions have been 
considered which a re  feasible if the radius of curvature  is a specified monomial  power function of the longi,  
tudinal coordinate x [2, 3]. 

Autonomous solutions d ~ 1 7 6  exist  in the general  case ,  however,  because there are two pa rame te r s  
in the problem.  A method leading to a quasiautonomous solution is based on expanding the flow function 
into a power se r ies  in t e rms  of the per turbat ion pa ramete r ,  but this is valid only near  the source [4]. We, 
therefore ,  propose  here a numer ica l  solution. 

On the basis  of the incompress ibi l i ty  condition, we express  the flow function ~(x, y) as 
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Dimensionless  velocity profile u(a) and frictional s t r e s s  
~w(b) as functions of the ~-coordinate .  

where the numer ica l  constant  E 0 is not the same as the product  of the volume flow per  second and the mo-  
mentum per  unit mass  in [5]. Then Eq. (1) for function F will become 
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with the upper sign re fe r r ing  to a convex surface and the lower sign r e fe r r ing  to a concave surface,  

The boundary conditions (2) are  now rewri t ten  as 

F = O, OF 0 at ~ O; OF 0 - -  = - - =  at 7]-+ oo. ( 5 )  
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The resul t ing Eq. (4) with the boundary conditions (5) is universal  when r e f e r r e d  to a constant  radius 
of curvature  and it needs to be solved only once. The introduced function F(V, ~) sat isf ies  the Akatnov 
equation [5] at ~ = 0 and, thus, the initial profile at } = 0 is represented  as a solution to the Akamov equa- 
tion for a jet t ravel ing along a flat wall. 

By introducing the function ~ = ~F/Ort, we reduce Eq. (4) to a second-o rde r  differential equation which 
has been solved numer ica l ly .  The numer ica l  solution to Eq. (4) with the boundary conditions (5) was ob- 
tained by the implici t  difference scheme.  The derivat ives with respec t  to r? and ~ were replaced by centra l  
differences and the resul t ing sys tem of nonlinear algebraic  equations was solved on each ~-s tep by simple 
i terat ions,  whiIe the l inear ized sys tem of difference equations was solved in each i teration by the e l imma-  
tion method [6]. 

The resut ts  of these computations to obtain a dimensionless  velocity profile u = u/vrE0/ux and a di- 
mensionless  profi le of fr ict ional  s t r e ss  "~w = rw/#~v/-E03/vhx5 are  shown in Fig. la ,  b respect ively .  

The prof i les  of velocity and fr ict ional  s t r e s s  depend largely  on the curvature  of the surface .  As 
inc reases ,  the velocity profi le  at  a concave surface  becomes  more  peaked with a maximum which also in- 
c r ea ses  and shifts toward lower values of the autonomous variable ,). The fr ict ional  s t r e s s  follows an 
anaiogous trend. At a convex surface the jet  slows down and at some sect ion the boundary layer  separa tes  
f rom the surface .  Numerical  calculations indicate that the cr i t ica l  section is determined by the pa rame te r  
value ~cr = 1.15. At higher values of ~ the profi le  becomes  b lur red .  

An essent ia l  feature here is that a r e s t ruc tu r ing  of the boundary layer  occurs  within the initial seg-  
merit along the curved sur face  (Fig. i) .  The resu l t s  obtained in [4J are  atso shown in Fig. lb. 

An explanation for the d iscrepancies  is that in [4] the flow function was expanded into ser ies  in t e rms  
of a smali  pa r ame te r ,  valid only near  the source .  Only two t e rms  of the se r ies  were retained there,  and 
this resul ted in large e r r o r s  in calculations of the flow far away f rom the source .  
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NOTATION 

are the longitudinal and t ransverse  coordinate respectively; 
are the projections of the velocity vector on the normals of tangents to the x-  and y-coordinate curves 
respectively;  
is the flow function; 
are the dimensionless coordinates; 
is the dimensionless flow function; 
is the tangential skin-friction s t ress ;  
is the density; 
is the kinematic viscosity; 
is the dynamic viscosity; 
is the radius of curvature.  
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